
Journal of Mathematical Chemistry Vol. 32, No. 2, August 2002 (© 2002)

Modelling dynamics of amperometric biosensors in batch
and flow injection analysis

R. Baronas a, F. Ivanauskas a,b and J. Kulys c

a Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, 2600 Vilnius, Lithuania
E-mail: romas.baronas@maf.vu.lt

b Institute of Mathematics and Informatics, Akademijos 4, 2600 Vilnius, Lithuania
E-mail: feliksas.ivanauskas@maf.vu.lt

c Institute of Biochemistry, Mokslininku 12, 2600 Vilnius, Lithuania
E-mail: jkulys@bchi.lt

A mathematical model of amperometric biosensors has been developed. The model is
based on non-stationary diffusion equations containing a non-linear term related to Michaelis–
Menten kinetic of the enzymatic reaction. Using digital simulation, the influence of the sub-
strate concentration as well as maximal enzymatic rate on the biosensor response was investi-
gated. The digital simulation was carried out using the finite difference technique. The model
describes the biosensor action in batch and flow injection regimes.
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1. Introduction

Biosensors are devices that combine the selectivity and specificity of a biologi-
cally active compound with a signal transducer and an electronic amplifier [1–3]. The
transducer converts the physico-chemical change of the biological sensing element, usu-
ally an enzyme, resulting from the interaction with analyte into an output concentration
dependent signal. The biosensors are classified according to the nature of the phys-
ical transducer. The amperometric biosensors measure the changes of the current on
a working indicator electrode due to direct oxidation of the products of the biochemical
reaction [2–4]. In this case the potential at the electrode is held constant while the cur-
rent flow is measured. The amperometric biosensors are known to be reliable, cheaper
and highly sensitive for environment, clinical and industrial purposes.

Starting from the publication of Clark and Lyons [1], the amperometric biosen-
sors became one of the popular and perspective trends of biosensorics [2]. The under-
standing of the kinetic regularities of the biosensors is of crucial importance for their
design. The general features of amperometric response was analyzed in the publica-
tions of Mell and Maloy [5,6]. However, due to limiting calculation possibilities and
unperfect mathematics, the calculations were restricted by two critical concentrations of
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substrate when enzyme acted at the first- and zero-order reaction conditions. Some later
reports were also devoted to calculate steady-state and non-stationary kinetics of amper-
ometric biosensor response [7–11]. The development the numerical methods of solving
of partial differential equations and facilities of modern computers open possibilities to
make calculation at all interval of substrates concentration and at different diffusion and
enzymatic reaction rate. The goal of this investigation is to make a model allowing an
effective computer simulation of membrane biosensor as well as to investigate the influ-
ence of the kinetic parameters on the response of the biosensors. The developed model
is based on non-stationary diffusion equations [12], containing a non-linear term related
to the enzymatic reaction. The model allows to simulate the biosensor action in batch
and flow injection regimes. In the flow injection analysis the biosensor contacts with
the substrate for short time whereas in the batch analysis the biosensor is assumed as
immersed in the substrate solution of infinite volume and during long time [13].

In this paper, digital simulation of the biosensor response was carried out using
the implicit finite difference scheme [14,15]. The explicit scheme is usually easier to
program, however, the implicit scheme has a higher simulation speed [8,10,15–17]. The
developed program was employed also to generate multiple biosensor response data for
four specific analytes of various concentrations. The generated data was used for the
amperometric calibration of a biosensor array. Development of methods of analysis
of mixtures with a biosensor array and chemometrics using a non-linear multivariate
calibration is following [18,19]. The software for characterisation of wastewater (alarm
system) is under development.

2. Mathematical model

During an enzyme-catalyzed reaction

S
E→ P (1)

the substrate (S) binds to the enzyme (E) to form enzyme-substrate complex. While
it is a part of this complex, the substrate is converted to product (P). The rate of the
appearance of the product depends on the concentration of the substrate.

In the simplest case, when the diffusion of substrate molecules is neglected and
steady-state conditions are assumed for the enzyme reaction, the mathematical model of
enzyme kinetics is given by Michaelis–Menten equation:

ν = dP

dt
= −dS

dt
= VmaxS

KM + S , (2)

where ν is the rate of the enzymatic reaction, Vmax is the maximal enzymatic rate at-
tainable with that amount of enzyme, when the enzyme is fully saturated with substrate,
KM is the Michaelis constant, S is the substrate concentration, P is concentration of the
reaction product, and t is time. Vmax corresponds to relative activity of substrate.
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Let us consider a membrane amperometric biosensor which can be treated as en-
zyme electrode, having a layer of enzyme immobilized onto the surface of the probe.
The Michaelis–Menten model (2) of enzyme kinetics describes the steady-state kinet-
ics of biosensors satisfactorily when the rate of enzyme conversions exceeds the rate of
mass transfer [2]. However, the mass transfer by diffusion is a first-order reaction with
respect to substrate concentration [8]. Imposing a diffusion thus has the effect of extend-
ing the linear range of initial reaction velocity beyond the KM in (2) value of the normal
enzyme. Because of this linear relationship, however, the observed rate of the reaction,
and therefore analytical signal, is lower than would have been in a kinetically controlled
enzyme reaction conforming to the rectangular hyperbola of Michaelis–Menten kinetics.

Let us assume the symmetrical geometry of the electrode and homogeneous distri-
bution of immobilized enzyme in the enzyme membrane. Considering one-dimensional
diffusion, coupling of reaction (1) with the diffusion described by Fick’s law leads to the
following equations:

∂S

∂t
=DS

∂2S

∂x2
− VmaxS

KM + S , 0 < x < d, 0 < t � T , (3)

∂P

∂t
=DP

∂2P

∂x2
+ VmaxS

KM + S , 0 < x < d, 0 < t � T , (4)

where d is thickness of enzyme layer, T is full time of biosensor operation to be ana-
lyzed, DS and DP are diffusion coefficients of the substrate and product, respectively.

The operation of biosensor starts when some substrate appears over the surface of
the enzyme layer. This is used in the initial conditions (t = 0)

S(x, 0) = 0, 0 � x < d, S(d, 0) = S0, (5)

P(x, 0) = 0, 0 � x � d, (6)

where S0 is the concentration of substrate (bulk) over the biosensor.
Because of electrode polarization, the concentration of the reaction product at the

electrode surface is being permanently reduced to zero. If the substrate is well-stirred
and in powerful motion, then the diffusion layer (0 < x < d) will remain at a constant
thickness. Consequently, the concentration of substrate as well as product over the en-
zyme surface (bulk solution/membrane interface) remains constant while the biosensor
contacts with the substrate. In the flow injection regime the biosensor contacts the sub-
strate for short time only (seconds to tens of seconds) [13]. When the analyte disappears,
a buffer solution swills the enzyme surface, reducing the substrate concentration at this
surface to zero. Because of substrate (analyte) remaining in the enzyme membrane, the
mass diffusion as well as the reaction still continues some time even after the disconnect
of the biosensor and substrate. This is used in the boundary conditions (0 < t � T )

given by

∂S

∂x

∣∣∣∣
x=0

= 0, (7)
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S(d, t)=
{
S0, t � TF,

0, t > TF,
(8)

P(0, t)=P(d, t) = 0, (9)

where TF is the time of flow injection, i.e., the time when analyte disappears from the
bulk solution/membrane interface.

In the batch regime of the analysis the modelled biosensor remains as immersed
in the substrate all the analyzing time. Assuming TF = T the model expressed by
equations (3)–(9) may be accepted for batch analysis as well. In the batch analysis the
boundary condition (8) reduces to S(d, t) = S0, t � T .

3. Digital simulation

Definite problems arise when solving analytically the non-linear partial differential
equations with complex boundary conditions [12,15]. To obtain an approximate analyti-
cal solution, approximation and classification of each different condition are needed. On
the other hand, digital simulation to obtain numerical solution can be applied almost to
any case, and usually neither simplification nor classification is necessary. Consequently,
the problem (3)–(9) was solved numerically.

The finite difference technique [14] was applied for discretization of the mathe-
matical model. We introduced an uniform discrete grid in both x and t directions.

A semi-implicit linear finite difference scheme has been built as a result of the
difference approximation of (3), (5), (7), and (8). Since non-linear term related to
Michaelis–Menten function contains only one unknown quantity – substrate concen-
tration, then equations (4), (6), and (9) were differenced to a fully implicit scheme.
The resulting systems of linear algebraic equations was solved efficiently because of the
tridiagonality of the matrices of the systems.

An explicit scheme is easier to program, however, the implicit scheme is more ef-
ficient. Although the processing speed of modern computers is high enough to ensure
practical use of explicit schemes, the use of the faster implicit scheme well justified be-
cause of a large number of simulations, which were carried out in investigation discussed
below.

Because of boundary conditions (8) and (9) of the first type on the both borders
x = 0 and x = d a small step of the grid was required in x direction to have accurate
and stable result of computations. Usually an implicit computational scheme does not
restrict time increment [14]. However, step size of the grid in time direction is restricted
due to the non-linear reaction term in (3), (4) and boundary conditions. An another
restriction arises in the case of flow injection analysis, when the boundary condition (8)
is a discontinuous function of time. In order to be accurate we employed space step
size of 10−3d and time step size of 10−3 s. For testing of the implicit scheme-based
simulator we built also an fully explicit scheme-base simulator. The resulting speed of
calculations in case of the explicit scheme was more than 10 times less than in the case
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of implicit one. Because of this the implicit scheme-based simulator was employed to
investigate the effect of kinetic parameters to biosensor response. The implicit scheme-
based simulator runs about 40 s to simulate a 100 s period biosensor action on a PC
based Intel Pentium III 750 MHz microprocessor. The software was programmed in
C language [20].

In computer simulation, the initial condition S(x, 0) = ϕ(x) was employed instead
of (5) to avoid a discontinuity. Here ϕ is a continuous function: ϕ(x) = 0, at 0 �
x � d − ε, ϕ monotonous increases at d − ε < x � d, and ϕ(d) = S0. Several
different expressions of ϕ as well as values of small ε were employed. Using the similar
technique, the discontinuous boundary condition (8) was also reduced to a continuous
one. However, notable difference between solutions was not observed. That is why the
equations (5) and (8) is used in simulation discussed bellow.

The current is measured as a response of a biosensor in a physical experiment.
The current depends upon the flux of reaction product at the electrode surface, i.e., at
border x = 0. Consequently, a density i of the current at time t is proportional to
the concentration gradient of the product at the surface of the electrode as described by
Faraday’s law:

i(t) = neFDP
∂P

∂x

∣∣∣∣
x=0

, (10)

where ne is a number of electrons involved in a charge transfer at the electrode surface,
and F is Faraday constant, F ≈ 9.65 × 104 C/mol. Having a numerical solution of the
problem (3)–(9), the density of the biosensor current can be calculated easily.

The mathematical model (3)–(9) as well as the numerical solution of the model was
evaluated for different values of the maximal enzymatic rate Vmax. The following values
of the parameters were constant in the numerical simulation of all the experiments:

DS = DP = 3.0 × 10−6 cm2/s, KM = 1.0× 10−7 mol/cm3,

ne = 2, d = 0.02 cm,

TF = 10 s (in a case of flow injection analysis only).

(11)

The evolution of the current density as a biosensor response at three values
of Vmax: 10−7, 10−8 and 10−9 mol/cm3s is presented in figure 1 for both regimes of
analyses: batch and flow injection.

Figure 1 shows, that the maximal biosensor current increases with increase of max-
imal enzymatic rate Vmax. The time of the maximal biosensor current decreases with
the increase of Vmax. This property is valid for both regimes of analysis: batch and
flow injection. In flow injection regime the time of maximal current occurs noticeably
later after the time TF = 10 s of analyte removing. For example, in the case when
Vmax = 10−8 mol/cm3s the current starts to decrease with delay of 9 s, i.e., at t = 19 s.
This delay increases with the decrease of Vmax.

The biosensor action was simulated also at Vmax = 10−6 mol/cm3s. However, there
was no notable difference between curves of the current at Vmax = 10−7 and Vmax =
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Figure 1. The dynamics of the biosensor current at three maximal enzymatic rates Vmax: 10−7, 10−8

and 10−9 mol/cm3s in batch (�, ◦, �) and flow injection (∇, ✸, +) analysis at substrate concentration
of S0 = 2 × 10−8 mol/cm3. The solid, dashed, and dot line shows the maximal current, half its and half

time its at Vmax = 10−7 mol/cm3s, respectively.

10−6 mol/cm3s. The computer simulation showed, that the relative difference between
values of the current density can be noticed when the reaction starts only. This difference
exceeds 50% only when t < 0.6 s, and it does not exceed 1% when t > 2.3 s. This
appears in both cases of analysis: batch and flow injection. This effect can be explained
by an inequality 10−6 
 KM = 10−7. As it is possible to notice in figure 1, even in
a case when Vmax = 10−8 = 10KM values of the biosensor current differ from the values
in another one case when Vmax = 10−7 = KM only slightly. Because of this, we accept
no values of Vmax greater than KM in investigation discussed below.

4. Results and discussion

Using computer simulation we have investigated the dependence of the maximal
biosensor current on the concentration of substrate. In the case of batch analysis the
maximal biosensor current imax is the steady-state current i∞. In the computer simula-
tion, every 0.1 s the biosensor response was checked if the steady-state current reached.
The calculation was terminated when the relative difference of two last values of the
current is less than 10−5%. In flow injection analysis the current function i(t) is not
monotonous, therefore the maximal biosensor current imax was calculated by computer
simulation until i(t) starts to decrease.

The investigation was carried out at the following values of Vmax: 10−7, 10−8, 10−9,
10−10, and 10−11 mol/cm3s to get results for a wide range of values of maximal enzy-
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Figure 2. Dependence of the maximal biosensor current on concentration S0 of the substrate at five max-
imal enzymatic rates Vmax: 10−7, 10−8, 10−9, 10−10 and 10−11 mol/cm3s in batch analysis. The solid
and dashed lines show the maximum of maximal current and half its, respectively, at Vmax of 10−11 and

10−11 mol/cm3s. The dot line shows Michaelis constant KM.

matic rate. Results of calculation in the case of batch analysis are depicted in figure 2
while figure 3 presents results for the flow injection analysis. As it is possible to no-
tice, the shape of any curve of the maximal current in batch analysis is very similar to
the corresponding one in flow injection analysis. The maximal biosensor current imax

is a monotonous increasing function of the substrate concentration at different values
of maximal enzymatic rate Vmax in both regimes of analysis. In both cases of analy-
sis, the maximal current increases only slightly at high concentration of substrate, i.e.,
S0 > 10−5 mol/cm3.

Comparing values of the maximal current obtained by different regimes of analysis,
we can notice, that the maximal current in batch analysis is greater than the correspond-
ing value in flow injection analysis for all values of S0 and Vmax. However, the relative
difference of corresponding values of maximal current decreases with increase of sub-
strate concentration. For example, the relative difference between maximal currents in
different regimes of analysis is from 2 to 4% at S0 = 10−4 mol/cm3, for all values
of Vmax. However, the maximal current in batch analysis is 7–25 times greater than cor-
responding one in flow injection analysis at S0 = 10−9 mol/cm3. The dependence of
maximal current on regime of analysis as well as Vmax is discussed also below.

The biosensor response is known to be under mass transport control if the enzy-
matic reaction in the layer of thickness d is faster than the transport process. The con-
centration of substrate reaches zero inside the enzyme layer at close proximity to x = d
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Figure 3. Dependence of maximal biosensor current on concentration S0 of the substrate at five maximal
enzymatic rates Vmax: 10−7, 10−8, 10−9, 10−10 and 10−11 mol/cm3s in flow injection analysis. The solid
and dashed lines show the maximum of maximal current and half its, respectively, at Vmax of 10−11, 10−10

and 10−9 mol/cm3s. The dot line is S0 = 9.7× 10−7 mol/cm3.

when the dimensionless parameter σ is much greater than unity [2], where

σ = d
√
Vmax

DSKM
. (12)

This parameter essentially compares the rate of enzyme reaction (Vmax/KM) with diffu-
sion through the enzyme layer (d2/DS). If σ < 1 then enzyme kinetics predominate.
The response is under diffusion control if σ > 1. Since d,DS, and KM were constant in
our numerical experiments as defined in (11), then σ 2 = 4/3× 109Vmax. Because of this
enzyme kinetics predominate (σ < 1) when Vmax < Vσ , where

Vσ = DSKM

d2
= 0.75 × 10−9 (mol/cm3 s). (13)

The Michaelis constant KM is known to be the substrate concentration at which the
reaction rate is half its maximal value. Figure 2 shows the effect of halving for two values
of Vmax: 10−10 and 10−11 mol/cm3s at which enzyme kinetics predominate. The maxi-
mum of maximal current equals to about 1.93×10−7 and 1.93×10−8 A/cm2 at maximal
enzymatic rate of 10−10 and 10−11 mol/cm3s, respectively. Half of the maximum of max-
imal current is reached at substrate concentration of about KM = 10−7 mol/cm3 for both
values of Vmax. The relative difference between half of the maximum of maximal current
and maximal current at KM does not exceed 1% at both values of Vmax. The effect of
halving is not valid when the biosensor response is under diffusion control, Vmax > Vσ .
For example, in the case of Vmax = 10−9 mol/cm3s, the half of the maximum of maximal
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current is reached at S0 ≈ 8.3 × 10−7 mol/cm3 = 8.3KM. It means that the mass trans-
port is significant at maximal enzymatic rate Vmax = 10−9 mol/cm3s and values defined
by (11).

We verified if the effect of halving is valid in flow injection analysis exactly like
in batch one. The maximum of maximal current equals to about 1.93 × 10−8 A/cm2

at maximal enzymatic rate of 10−11 mol/cm3s (see figure 3). The half of the maximum
(9.65×10−9A/cm2) of maximal current is reached at S0 ≈ 9.7×10−7 mol/cm3 = 9.7KM,
which is noticeably far from KM. However, for two other values of Vmax: 10−10

and 10−9 mol/cm3s the half of the maximum of maximal current is reached also at
S0 ≈ 9.7KM. This is not valid for greater values of Vmax. So, the effect of halving
is valid in flow injection analysis in the cases when the biosensor response is under en-
zyme kinetics control. However, the half of maximum of maximal current differs from
Michaelis constant KM and equals about 9.7KM at values defined in (11).

The dependence of time moment of occurrence of the maximal current on the sub-
strate concentration was also investigated in both regimes of analysis: batch and flow
injection. Since the steady-state time is very sensitive to the error of calculation of
maximal current in batch analysis, we investigated the evolution of half of steady-state
time [12]. The resultant relative output signal i∗(t) of amperometric biosensor can be
expressed as:

i∗(t) = i∞ − i(t)
i∞

, i∞ = lim
t→∞ i(t), (14)

where i(t) is the output current density at time t as defined in (10), i∞ is the steady-state
current.

Let t0.5 be the time at which the reaction–diffusion process reaches the medium,
called half time of steady-state or, particularly, half of the time moment of occurrence
of the maximal current, i.e., i∗(t0.5) = 0.5. The half time t0.5 of maximal current is
presented in figure 1.

Figure 4 shows an effect of substrate concentration S0 on half time t0.5 of maximal
biosensor current in batch analysis. Figure 5 shows evolution of time tmax of maximal
current vs. substrate concentration in flow injection analysis. As it is possible to notice
in figures 4 and 5 the corresponding curves of time tmax vs. substrate concentration S0

differs considerably for different regimes of analysis, while figures 2 and 3 show similar
behaviour of maximal current. In flow injection regime (figure 5) tmax is a monoto-
nous increasing function of S0 at all values of Vmax. While figure 4 shows that t0.5 is
a monotonous decreasing function of S0 at Vmax = 10−11, 10−10 and 10−9 mol/cm3s,
and t0.5 is even a non-monotonic function at Vmax = 10−7 and 10−8 mol/cm3s. This
was quite unexpected result. The effect of non-monotony is observed at high maximal
enzymatic rate only. As it is possible to notice in figure 4, t0.5 gains the maximum at
different concentration S0 of substrate for different values of Vmax. The half time t0.5
of maximal current is reached at S0 ≈ 6 × 10−6 for Vmax = 10−7, while it appears at
S0 ≈ 5 × 10−7 mol/cm3 for Vmax = 10−8 mol/cm3s. Additional calculation showed
that the curve of half time t0.5 vs. S0 monotonously decreases for all values of Vmax
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Figure 4. Dependence of half time of the maximal biosensor current on the concentration S0 of substrate at
five maximal enzymatic ratesVmax: 10−7, 10−8, 10−9, 10−10 and 10−11 mol/cm3s in batch analysis.

Figure 5. Dependence of time of maximal biosensor current on concentration S0 of the substrate at five
maximal enzymatic rates Vmax: 10−7, 10−8, 10−9, 10−10 and 10−11 mol/cm3s in flow injection analysis.

greater than about 10−9 mol/cm3s. Let us notice that this value correlates with a value
of Vσ (see (13)) at which the diffusion begins to predominate in the biosensor response.
We conclude that non-monotonous evolution of the half time t0.5 of maximal biosensor
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Figure 6. The maximal biosensor current versus maximal enzymatic rate Vmax at three concentrations S0
of substrate: 2.0 × 10−9, 2.0 × 10−8 and 2.0 × 10−7 mol/cm3 in batch (�, ◦, �) and flow injection

(∇, ✸, +) analysis.

current versus substrate concentration can be observed when the biosensor response is
under diffusion control.

Figure 4 shows also that half time t0.5 of maximal current almost does not depend
on the maximal enzymatic rate Vmax at very high concentrations S0 of substrate (S0 >

∼5.0 × 10−5 mol/cm3) in batch analysis. Particularly, values of t0.5 differs by less than
5% only at S0 = 10−4 mol/cm3.

Figure 5 shows the considerable increase of time tmax of maximal current vs. sub-
strate concentration S0 at high values of S0 only in flow injection analysis. This can be
explained by sufficient supply of the substrate after the time TF (see (8)) when the sub-
strate was removed from solution. The more substrate penetrates into the enzyme layer
until time TF, the longer reaction performs. The time of maximal current increases very
weakly vs. S0 at low values of S0 (S0 < ∼5.0× 10−7 mol/cm3).

We have investigated also the dependence of time of the maximal biosensor cur-
rent on the maximal enzymatic rate Vmax at different concentration S0 of the substrate.
Results of computer simulation are depicted in figure 6 and 7 at three concentrations
S0: 2 × 10−7, 2 × 10−8 and 2 × 10−9 mol/cm3 in both regimes of analysis. Figure 6
shows that the maximal current is higher in batch analysis than an another one in flow
injection analysis at full range of investigated maximal enzymatic rates (10−11 � Vmax �
10−7 mol/cm3s) and concentration S0 ∈ {2 × 10−7, 2 × 10−8, 2 × 10−9 mol/cm3}. The
maximal current in flow injection analysis is up to 10 times less than the maximal cur-
rent in batch analysis. This was also discussed above also for wider range of S0. Let us
notice, that the shape of the curve of maximal current is similar in all the cases including
results presented in figures 2 and 3.
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Figure 7. Time (in batch analysis) and half time (in flow injection analysis) of the maximal biosensor current
versus maximal enzymatic rate Vmax at three concentrations S0 of substrate: 2.0 × 10−9, 2.0 × 10−8 and

2.0× 10−7 mol/cm3 in batch (�,◦, �) and flow injection (∇, ✸, +) analysis.

Figure 7 shows that time of maximal current decreases with increase of maxi-
mal enzymatic rate Vmax in both regimes of analysis. It was unexpected to see that
time tmax of maximal current in batch analysis and half time t0.5 in flow injection analy-
sis differs slightly only at high values of Vmax. E.g., tmax = 18.5, t0.5 = 18.6 s at
Vmax = 10−7 mol/cm3s for all three values of S0.tmax varies from 20.8 to 21.7 and t0.5
from 21.3 to 22.5 s at Vmax = 10−8 mol/cm3s. Variation of tmax as well as t0.5 increases
with decrease of Vmax. However, maximal time in batch analysis (t0.5) varies much more
that another one in flow injection analysis (tmax). Particularly, there is no notable differ-
ence between curves of tmax at S0 = 2×10−9 and S0 = 2×10−8 mol/cm3. The maximal
difference between these two curves is about 0.3 s only.

5. Conclusion

The mathematical model (3)–(9) of amperometric biosensor operation can be suc-
cessfully used to investigate the kinetic regularities of biosensors in both regimes of
analysis: batch and flow injection.

A non-monotonous evolution of the half time of the maximal biosensor current
versus substrate concentration is observed when the biosensor response is under diffu-
sion control in batch analysis. At the beginning, the half time increases with increase of
substrate concentration. The increase of half time up to 10% was observed in computer
simulation. Later the half time begins to decrease (see figure 4).

The effect of halving of maximal current is valid in flow injection analysis (figure 3)
as well as in batch analysis (figure 2) in the cases when the biosensor response is under
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enzyme kinetics control. However, in the flow injection analysis, the half of maximum of
maximal current differs from Michaelis constant KM and equals about 9.7KM at values
defined in (11).
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